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A key step in the oxidation of water to,@n the catalytic cycle
of photosystem Il is the conversion of a MNOH species to MnO.
This transformation is proposed to occur through proton-coupled
electron transfer (PCET)from the hydroxo ligand to a nearby
tyrosyl radicaP Examples of this transformation in well-character-
ized systems are rafelThe reverse reaction, in which a hydrogen
atom is abstracted from a substrate by a highly reactive metal oxo
intermediate, is more commonly obsenfelido ligands, which
are often considered to be surrogates for oxos, display similar
reactivity. Thus, hydrogen abstraction by imidos is often obseréed,
but their formation by PCET from an amido complex has not been Figure 1. (a) ORTEP diagram of one of the molecules in the asymmetric
reported. Here we describe the formation of a cobalt(lll) imido  unit of LCONHBu. Thermal ellipsoids shown at 50% probability. Selected

complex from the corresponding cobalt(ll) amido complex and bPond lengths (A) and angles (deg): CotN(97) 1.886(7), Co(1yC(1)

: . : 2.128(7), Co(1}C(8) 2.064(7), Co(1yC(15) 2.099(6), Co(EyN(97)—
present computational data consistent with a concerted (PCET)C(ZS) 153.5(6), C(1}Co(1)-C(8) 91.6(2), C(1} Co(1)-C(15) 89.9(2),
pathway. C(8)—Co(1)-C(15) 93.4(2). (b) ORTEP diagram of LC&Wu. Thermal

The four-coordinate complex LCo€(L = phenyltris(1tert- ellipsoids shown at 50% probability. Selected bond lengths (A) and angles
butylimidazol-2-ylidene)borato) reacts with LiNBU to form the Eg?gg (Clgflc)zyffi)gtg&(;(3%' ((31?)(’\1251()11%(142?*:3[(7‘37%?)(1‘():%1(5_)12:18‘)‘_9
. S . L , Co . , Co — 7(3), o

dark-green, high-spirS(= /) amido complex LCONMBu in high  51)'95 6(2). C(11) Co(1)-C(31) 86.8(2), C(21)Co(1)-C(31) 87.7(2).
yield. This rare example of a monomeric cobalt amido complex
has been crystallographically characterized (Figure 1a). The asym-Scheme 1

metric unit consists of three crystallographically independent Bu
molecules, all showing identical structural features. The-Bdond 4 ‘BUQO, 4

. 2 N—Bu / N—Bu
lengths (1.886(71.88(2) A) and bent CoN—C linkages (152.5- (\ >\ .

(2)—172.4(9)) are comparable to those of other three- and four- B N ’\CO_N ' B _ N Co=N (
coordinate cobalt amido complexes. Ph BNSN‘_/( H pentane Ph EsWNK_/<
1 i i i . .

The IH NMR spectrum of the complex is consistent with the KS"{\‘BGB” @%GBU

X-ray crystal structure. Seven paramagnetically shifted resonances
are observed and can be assigned on the basis of integration. Ascheme 2. Calculated Thermodynamic Cycle in Diethyl Ether

weak band at 3149 cmin the IR spectrum is assigned to the-N (B3LYP/6-31G*, PCM) Showing Relative Free Energies (kcal/mol)
stretching vibration. Although sensitive to both water and oxygen,
this complex has significantly greater thermal stability than most " S ET ®m )\
late transition metal alkylamido complexes, remaining unchanged [Co ]_N\H waq | [C° ]_N\H
for days at 100°C. s=3p sot
Reaction of the amido complex with the stable 2,4,@eri¢
butyl)phenoxy radicaf results in immediate formation of the lilac +117 +10 -24
cobalt(lll) imido complex LCoNBu in high yield (Scheme 1). The PT \ PCET \pT
diamagnetic cobalt product has been characterized by X-ray
crystallography (Figure 1b) antH NMR spectroscopy, and the
2,4,6-tritert-butyl)phenol byproduct has been characterizedHby [C%u]ENA( ET [Co'"]EN~<
NMR spectroscopy. The X-ray crystal structure of LCBMshows “ 107 i
similar features to related complexes. In particular, the short Co- s=32 s=0
(1)—-N(41) bond length (1.660(3) A) and linear CotNI(41)—
C(41) bond angle (179.7(3)are in line with other structurally At least three mechanisms for the formation of l!'@¢Bu can

characterized cobalt(lll) imido4. This transformation is unique in b€ PrOPSSGd (Scheme 2, the corresponding organic species are not

the synthesis of late metal imido complexes, which are typically Shown):* The cobalt(ll) amido complex could react by electron

prepared via nitrene capture by low valent precursors. transfer (ET) to form an intermediate cationic cobalt(lll) amido
complex, LCoNHBu™, followed by proton transfer (PT) to form

* New Mexico State University. the imido product, a pathway analogous to the route followed in
*Sandia National Laboratories. the synthesis of (dtbpe)NiN(2,61Pr,CsH3).13 A second possibility
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